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CALCULATION OF ROTATIONAL DERIVATIVES FOR
“LOCAL” INTERACTION OF A FLOW WITH THE SURFACE
OF A BODYT

A. 1. BunmMovicH and A. V. DUBINSKII
Moscow

(Received 2 July 1991)

The rotational derivatives of the force and moment characteristics are calculated for solids of revolution
that move at an angle of attack with small angular velocity. Formulas for rotational derivatives of the second
order are derived and analysed for the general class of “local” interaction models of the flow with the
surface of the body.

THE DEVELOPMENT of analytical methods of calculation for rotational derivatives in the non-
translational motion of bodies in free-molecular flow is considered in [1-3]; corresponding methods
for the intermediate rarefied gas flow region are developed in [2, 4, 5]. The approach proposed in [6]
is intended for a fairly general class of “local” models describing the interaction of the flow with a
rotating body; the implementation of this approach has led to working formulas for first rotational
derivatives [6, 7]. In this paper, the proposed approach is further developed for second rotational
derivatives.

In the attached coordinate system x, , x,, x3 shown in Fig. 1, the expression for the radius vector
of a point on the surface of the body can be represented in the form

r = @ (p)x,° + p cos 0x,° - p sin 6x,°

where x,%, x,°, x3° are the unit vectors of the coordinate axes; the function ®(p) defines the
generator of the solid of revolution with a plane maximum middle section of radius R, and

@ (0) =0, D' (0) >0, D (p) >0, 0<p <R P (R) < oe

The axes are oriented so that the translational velocity vector v is in the x;, x, plane making an
angle m — o with the x; axis

Vo = —Vq €08 az,’ + v, sin ax,’
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Fic. 1.

If the body rotates with angular velocity v, the expression for the velocity v of a point on the
surface of the body is written in the form

V=V +0O X T, @ =2 0X"
1

For the class of local interaction models [6], the expressions for the projections of the force acting
on an elementary surface area along the outer normal n® and the tangent 7° can, respectively, be
represented in the form

dF, = q,Q, (0)ds, dF; = q, (v-1%0,)Q (1)ds, gy == pxVs2/2 (§))

where v, is a characteristic velocity, p.. is the unperturbed flow density and 3, and €}, are functions
that model the interaction of the flow with the body.
Changing to dimensionless parameters

deBz - dS’ v’iv* -V, Voo'/v* > Voo ijv* - @
and dividing all linear dimensions by R, we write expressions for the “local” force and moment
coefficients relative to the origin in the form
dep = (dF,n0 + dF1%)/(q R?) = 19, (On + (1) vids, dem = r X des/R
n® = (—x;° + @' cos 0x,° -+ @’ sin O0x,%)/py, t = T/p,
Q (1) = Q, (1) — 1Q (1), Qp (1) = (1)
T (0, p, 8) = —n, sin B, + (g + p0;)c08 0 - v, cos a
=V @2+ 1, p, = OY + p, py = Uy sin a®’

After reduction, we rewrite the expressions for the total force and moment coefficients in the
form

ex, (@) = x,° SSS der = {0 4, (0,0, 8) dp a0 @)
o) = x §) dey. = {{ B. (0, p,0) dp o 3)

B; = p (A3 cos 6 — A4, sin 0)8;! + (p sin 04, — BA,)8;2 + (D4, —
— p cos 84,)6;7 4)
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Alp = —Q: () + wiQ, () (—vw cos a & p sin Bw, -+ p cos Bwy)
Ay/p = @ cos 8Q, () + pQ, (H)(Pwz; — p sin 0w, + vy sin ) (5)
Aylp = @' sin 68Q, (2) + w182, (2) (p cos b, — Dwy)

The “illuminated” part of the body surface § is characterized by the condition ¢=0; o is the
projection of S on the x;, x3 plane and ," is the Kronecker delta.

Depending on the angle of attack and the shape of the body, we can have three different
“illuminated” regions for small w. When ctga>®’(1), the lateral surface is fully “illuminated”.
When &'(0) <ctga<®’(1), there is a fully “illuminated” region near the nose of the body (i.e. a
value of a exists such that the part of the lateral surface cut off by the planes x; = 0 and x, = a is fully
“illuminated’’), which changes into a “partially illuminated” region (i.e. there exist a, and a, such
that for a, <a, <a, the circle representing the intersection of the plane x; = a, with the surface of
the body is partially located in the aerodynamic shadow). For ctga<®'(0), there is only “partial
illumination” of the lateral surface. In the last case, which is considered below in detail, the region o
is described by

0 (@, p) <O O (0,p), 0 KLp !
and the functions 8™ (w, p) defining the boundary of the region satisfy the equation
t (6™ ((’)7 P)] =0,v=1,2 (6)

Rotational derivatives are the coefficients of the Taylor (Maclaurin) series expansion of the
corresponding force or moment characteristic treated as a function of the angular velocity
components. Thus, a knowledge of the rotational derivatives enables us to analyse the effect of
rotation on the aerodynamic characteristics of the body in complex motion.

The calculation of rotational derivatives is a difficult problem primarily because the region o (S),
as well as the integrand in (2), (3), depend on the angular velocity component w;. Therefore, the
analysis of particular gas flow models usually requires simplifying assumptions [1-3]. However, as
we show below, exact expressions for the rotational derivatives can be obtained even in the general
case of model (1).

The formulas previously obtained in [7] for the first-order rotational derivatives can be easily
transformed to our case. This enables us to proceed directly to the calculation of the second-order
rotational derivatives.

We will use the following formula for differentiation with respect to a parameter of the integral of
some function {:

(o]

awawk Sgw(w,p,ﬁ)dﬂdp—ss "“’ - df dp +
[

2
5 ! (— 1)y [ 2Rl pB “’) o8 op(.p. 6V 20
= 3(0 amk 3w.
0 v=1
01[)((.), 0, 8) a0t ae(\) P
+2 L—a(“) ow; odw, + P (@, p, 6% 00,00 ]dp )

On the right-hand side of (7), the second integral is associated with the variation of the
boundaries of the region o. We can similarly represent the rotational derivatives in the form

c‘Jk = 62(,‘.\.1./5(1)]'6(1)); = Cijk + Actjk
mtjk = azmb\.l./am,-am,\. = M,""' -+ A]l/[ljk

where A is a correction due to the variation of the boundary of o.

Henceforth, the rotational derivatives are considered at w = 0 and the corresponding parameters
are subscripted 0.

Using the symmetry properties, the expressions for the rotational derivatives of the force
components can be written in the form
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clr =S altdpds = 2§ 4k dpdo (8)
Ty Zo
Aé? = (6251;/6(&,-60)3)@:9 == Aa‘];t + Ag),“‘*l (9)

where Z, is the part of the region o with x30; one and two asterisks denote the components of the
function that are, respectively, odd and even in 6.

The formulas for A%, , A., can be obtained by direct differentiation of (4) using the rela-
tionships

(094100 )gmp = PeQpv’ (—sin 88,7 + cos 885
(32Q,/060,00,)umo=1e2Q" (5in2 88,7 -+ cos? 88,7 — sin 6 cos B8)%), pe= o/t
Qp’ = dQ [t (@, ps 0L lwey, Qov’ = B2y [t (@, p, O/ [o—0

and can be represented in the form
Ay = (10" + PabhaVec €05 Ay + 21150Q0, ) sin B cos 667,
A, = (—p D' c0s? 0Q," — WylleVs Sin @ cos 8Q,," —
~— pa @Ry, )p sin 95%?3 — Bap? sin 6 cos 6902"5{?3
Ay = (@@’ sin? 0Qq," + 2p,DQ,, )p sin 88, +
+ 20’ Qy." sin 8 cos? 8p8,7* — 1,p%Q,’" sin B cos 867,
Ag’;*x = —p (1g2Q0)" + PalheVeo COS @ldqy” + 214pQ45")(8,7* sin? 8 -+ §,7F cos? 6)

Ay = (142 08 0Qp," + Ralgle Sin aQy,")p sin? 88,7 +

+ (RolaVes Sin & cOS 8Q,," -+ 2p, DRy,  + D’ cos 8Q,,") p cos 687" -+
+ nep? sin? 8902’5{?2

Aftws = (pED' sin? 0Qp)" — 1, ®Qpy") p cos 8875 -+ pyp? cos? 8Q4,'8]s

where 8,/ = 1if j = k = v and 8,/% = 0 otherwise; 3, ,/* =1, if j=vand k=porp=jand k= v,
and 3, /% = 0 otherwise.

Using relationship (4) and a representation similar to (9), we write the formulas for the rotational
derivatives of the moment characteristics

My =2 Bl dpde (10)
%
By = p (Alkes cos ® — Ak, sin 0) 5,1 +
+ (pA¥, sin 0 — @AK)82 + (@AW, — p cos 045582
The corrections ACp/*, AM,/* are given by the second integrals in (7) evaluated respectively for

x = A; and x = B; for ® = 0. The required formulas for 6 and their derivatives can be obtained
from (6). The resulting expressions are

6 =8(0), O =—8(p) sinB =L, cosh=—E=
6™ (o, p) ] v o/ 9%t Ji v ok
”_Wo;_ = Bgex -+ (~—— 1) 0w, mﬂm,.amk o = Ogas 4 (—1)" O«

g o= — PL g e = — 12 ]
60 s 8’ Halls ctg ady
% 2Ct & j ’
§H4 — “;s’uf“‘ [Wﬁé" — iy (207 —ctg?a) ‘Sgk}

ik pa® [ ook 3 1k G I PP
9;#* == ";L';{ <62’3 — f»ﬁ::ls’ Ctgz a61,3> 3. p'a == V(D f— Ctgz o



Rotational derivatives of “local” interaction of flow and body surface 49

Allowing for the symmetry properties, we obtain

1
ACH = 2 [Blue Adw; + Blue ASe; + Ol Abuas + Ole Alue; + 2 (OheBxe + OabEen) x
1]

X Agesi + 2 (OpesOfex + 03s03x) Ads; + Ofx Age; + 638 Agans] dp (11)
The expressions for AMy/* are obtained by replacing the symbol A by the symbol B in (11), and

AG = (0A44/08)umq == Abs; + Afani, Bo = Bow + Bies;
Agry = pap (R + Ve €08 Q") 8in 0, Afesq = 0
Agey = —p (®'Qy + 1, D" cos 0" + pale sin algy') X
X sin 8, A, =
Agrs = 0, Ajany = p®' (cos 0Qy; — p, sin268,,")
B = 0, By, = p [(Agwws + Agtrs) cos 8 -+
+ (A& — Ages) sin 8] (12)
Bosy == 0, Bossy = p (Agwey cos 8 + Al sin 8) — ©Ae,
Bf,’*s == Q)A:*g — p sin 94 gex; — p coOs 9143**1, Bgmm =0
Agrr = U, Agery = —p (g1 + PiVeo €OS &lpy)
Agky = 0, Agrry = p (D' cos 8y, + PV sin ale,)
Aok = p®@ sin 0Qy,, Agasg = 0
Byxi = p (cos 04 sy — sin 04 jexp) 6:1 + (p sin 64 gaey —
—_ (DAO*;,) 8%, Bo**i = ((DAO**?. - P COS 9140**1) 8¢
Expressions (8) and (10)-(12) give a “folded” representation for the rotational derivatives; if we

“unfold” the corresponding formulas, we find that many rotational derivatives vanish and their
matrices have the form

0 00 0 + 0O
ci¥:1o » Of, Ci:l+ =« 0
0 0 = 0 0 =
00 0 + 0
7&:’3‘ ’ m(')flh 1 m(';g 0 0 =, m,’,i‘ + + 0
= » 0 0 0 +

where the symbols “plus” and “star”” are the non-zero values of the rotational derivatives. The star
corresponds to a non-zero (in general) correction associated with the variation of the “illuminated”
part. Analysis has shown that these corrections do not produce new non-zero rotational derivatives.
Comparison with the results of [3], which used the free-molecular flow approximation, shows that
the lists of zero derivatives match.

We should emphasize an important aspect associated with the transition to the general class of
local interaction models: we have shown that the rotational derivatives preserve their zero value
when the flow conditions are varied over a wide range in the framework of model (1).
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QUASI-MONOCHROMATIC WEAKLY NON-LINEAR WAVES
IN A LOW-DISPERSION BUBBLE MEDIUMY

N. A. GUMEROV
Tyumen

(Received 18 April 1991)

The propagation of quasi-monochromatic wave packets in a rarefied polydispersed mixture of a weakly
compressible liquid with a finite number of fractions of differently sized gas bubbles is considered. Two
equations for the modulation waves are derived by the multi-scale method in the cubic approximation in the
wave amplitude: the non-linear Schrodinger equation ignoring dissipation effects and the Landau-Ginzburg
equation for low dissipation due to the viscosity of the liquid and heat losses associated with bubble
vibration. The coefficients of the non-linear Schrédinger equation are investigated to analyse the non-linear
(modulational) stability of waves in a monodispersed non-dissipative bubble medium.

A LINEAR dispersion relationship has been previously obtained for acoustic waves in a polydispersed
bubble medium without dissipation [1] and for waves in a dissipative medium [2]. The general
scheme for deriving the amplitude equations by the asymptotic multiscale method has been
described in several monographs (see, e.g. [3]). Modulation equations have been obtained [4] for
waves in a monodispersed bubble chamber by Whitham’s averaged Lagrangian method [5].

1. THE EQUATIONS OF MOTION IN A NON-DISSIPATIVE MEDIUM

The plane one-dimensional motion of an ideal weakly compressible liquid with a low volume
content of spherical gas bubbles (a,<1) under conditions when thermal dissipation and capillary
effects can be ignored is described by Iordanskii’s equations [1, 6, 7]

+ Prikl. Mat. Mekh. Vol. 56, No. 1, pp. 58-67, 1992.



