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CALCULATION OF ROTATIONAL DERIVATIVES FOR 
“LOCAL” INTERACTION OF A FLOW WITH THE SURFACE 

OF A BODY? 
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(Received 2 July 1991) 

The rotational derivatives of the force and moment characteristics are calculated for solids of revolution 

that move at an angle of attack with small angular velocity. Formulas for rotational derivatives of the second 

order are derived and analysed for the general class of “local” interaction models of the flow with the 

surface of the body. 

THE DEVELOPMENT of analytical methods of calculation for rotational derivatives in the non- 
translational motion of bodies in free-molecular tlow is considered in [l-3]; corresponding methods 
for the intermediate rarefied gas flow region are developed in [2,4,5]. The approach proposed in [6] 
is intended for a fairly general class of “local” models describing the interaction of the flow with a 
rotating body; the implementation of this approach has led to working formulas for first rotational 
derivatives [6, 71. In this paper, the proposed approach is further developed for second rotational 
derivatives. 

In the attached coordinate system x1, x2, x3 shown in Fig. 1, the expression for the radius vector 
of a point on the surface of the body can be represented in the form 

c = 0 (p)xlo + p cos Bxpo _I- p sin 8x3O 

where xi’, xzo, x3’ are the unit vectors of the coordinate axes; the function a(p) defines the 
generator of the solid of revolution with a plane maximum middle section of radius R, and 

@ (0) := 0, a,’ (0) > 0, CD” (p) > 0, 0 < p < R, @' (R) < CQ 

The axes are oriented so that the translational velocity vector v, is in the x1, x2 plane making an 
angle IT - OL with the x1 axis 

voo = - v, cos cq” -j- va sin czxzo 
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FIG. 1. 

If the body rotates with angular velocity v, the expression for the velocity v of a point on the 
surface of the body is written in the form 

3 

v==v,+0xr, w = yJ OiXi@ 

1 

For the class of local interaction models [6], the expressions for the projections of the force acting 
on an elementary surface area along the outer normal no and the tangent TO can, respectively, be 
represented in the form 

dF,, = q&,, (t)ds, dF, = q* (~-r~h,)S2~ (t)ds, q* = p,~,~l2 0) 

where Y, is a characteristic velocity, p_ is the unperturbed flow density and fi, and 0, are functions 
that model the interaction of the flow with the body. 

Changing to dimensionless parameters 

dsfH2 --t (Es, viv, + v, v,!v* -+- vm, wR’ve -+ w 

and dividing ah linear dimensions by R, we write expressions for the “local” force and moment 
coefficients relative to the origin in the form 

dcp = (dF,nO $ dF,tO)/(q,R2) = I!& (t)n” + 52, (t) VI&, dc, = I‘ X dcFiR 

no = (-xl0 -+- rcD’ cos 0x,0 + @’ sin Bxw,O)i’ul, t = Tip, 

cc?* (t) = sz, (t) - m, (t), si?* (t) = 5-2, (t) 

T (0, p, 0) -= --pz sin Ow, + (us + n20a)cos 0 -L v, cos a 

u1 = JQrl2 ‘-t- 1, pL2 = 0’ + p, uz = u, sin a@’ 

After reduction, we rewrite the expressions for the total force and 
form 

cxi (0) = x;’ $ dCF L= 55 A i (w, p, 0) dp d8 
0 

wlxi (0) = xi0 SS dC, z 5s Bi (0, p, 0) dp de 
s d 

moment coefficients in the 

(2) 

(3) 

Bi=p(AfjCOSO - A, sin 6)&’ i- (p sin OA 1 - cDA #ii2 + (@A 2 - 

- p cos &4,)S? (4) 
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A,/p = --sZr (t) + ~~52, (t) (-u, cos CL + P sin 80, + p cos 80,) 

A,lp = a,’ cos 8!2, (t) T p.,Q, (t)(@o, - p sin ho, T v, sin a) (5) 
A3/p = CD’ sin OS& (t) -+ plQp (t) (p cos Ow, - @UI.LJ 

The “illuminated” part of the body surface S is characterized by the condition ta0; u is the 
projection of S on the x2, x3 plane and 6i” is the Kronecker delta. 

Depending on the angle of attack and the shape of the body, we can have three different 
“illuminated” regions for small o. When ctgo>@‘(l), the lateral surface is fully “illuminated”. 
When a’(O) <ctgol<<P’(l), there is a fully “illuminated” region near the nose of the body (i.e. a 
value of u exists such that the part of the lateral surface cut off by the planes x1 = 0 and x1 = a is fully 
“illuminated”), which changes into a “partially illuminated” region (i.e. there exist al and a2 such 
that for al <a, <a2 the circle representing the intersection of the plane x1 = a, with the surface of 
the body is partially located in the aerodynamic shadow). For ctgol<@‘(O), there is only “partial 
illumination” of the lateral surface. In the last case, which is considered below in detail, the region o 
is described by 

e(i) (0, P) $1 8 G e(2) (0, P), 0 c P G 1 

and the functions 8(“)(0, p) defining the boundary of the region satisfy the equation 

t [e(v) (0, p)I = 0, v = 1, 2 (6) 

Rotational derivatives are the coefficients of the Taylor (Maclaurin) series expansion of the 
corresponding force or moment characteristic treated as a function of the angular velocity 
components. Thus, a knowledge of the rotational derivatives enables us to analyse the effect of 
rotation on the aerodynamic characteristics of the body in complex motion. 

The calculation of rotational derivatives is a difficult problem primarily because the region a(S), 
as well as the integrand in (2), (3), depend on the angular velocity component wi. Therefore, the 
analysis of particular gas flow models usually requires simplifying assumptions [l-3]. However, as 
we show below, exact expressions for the rotational derivatives can be obtained even in the general 
case of model (1). 

The formulas previously obtained in [7] for the first-order rotational derivatives can be easily 
transformed to our case. This enables us to proceed directly to the calculation of the second-order 
rotational derivatives. 

We will use the following formula for differentiation with respect to a parameter of the integral of 
some function *: 

On the right-hand side of (7), the second integral is associated with the variation of the 
boundaries of the region cr. We can similarly represent the rotational derivatives in the form 

c::” _= ~%$$“a”; I ;Jk + AC,ih’ 

ml - s,’ J k - 
jk _L Afir jk 

1 1 

where A is a correction due to the variation of the boundary of u. 
Henceforth, the rotational derivatives are considered at o = 0 and the corresponding parameters 

are subscripted 0. 
Using the symmetry properties, the expressions for the rotational derivatives of the force 

components can be written in the form 
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(8) 

(9) 

where Za is the part of the region ai, with x3 +- ‘0; one and two asterisks denote the components of the 
function that are, respectiveiy, odd and even in 8. 

The formulas for A& , Aik oeei can be obtained by direct differentiation of (4) using the rela- 
tionships 

where SJk = 1 if j = k = v and S,i” = 0 otherwise; S,,$” = l,ifj=vandk=uorp=jandk=v, 
and &,,+jk = 0 otherwise. 

Using relationship (4) and a r~~res~~tation similar to (91, we write the formulas for the rotational 
derivatives of the moment characteristics 

The corrections A&[*, Amuck are given by the second integrals in (7) evaluated respectively for 
x=AjandX=Biforu= 0. The required formulas for 8 (“) and their derivatives can be obtained 
from (6). The resulting expressions are 

3F’ = $ (p), 
ctg a 

@‘=-0,(p), sin6$==-&, cost)o~--- rl, 
M(V) (w,p) 

I 

= t&G* + (-l)v e;*, 

$p(@) 

- 
aoj 

w=o I BWjaak f+aQ 

= @* + (-l)'O$i 

e&* L-2 -.--.@ !J‘a l&j, g* = - Jk ctg a&j 
itSW 

& L= _ Mctg a aSr&&S [u&k - pa (2W - ctg2 a) @] 

@* = lrra &kg 
( M= * 

F8 &g%&$ 
-3 > 1 9 pj = yrcD’~-- ctgaa 
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Expressions (8) and (lo)-(12) give a “‘folded” representation for the rotational derivatives; if we 
“unfold” the corresponding formulas, we find that many rotational derivatives vanish and their 
matrices have the form 

000 

/i 

o+o 

cg : 0 * 0 ) cg : + * 0 

I 

cg, & “,;:e ;/, ~~:14‘1 B 

where the symbols “plus” and “star” are the non-zero values of the rotational derivatives. The star 
corresponds to a non-zero (in general) correction associated with the variation of the “illuminated’” 
part. Analysis has shown that these corrections do not produce new non-zero rotational derivatives. 
Comparison with the results of 131, which used the free-molecular flow approximatian, shows that 
the lists of zero derivatives match. 

We should emphasize an important aspect associated with the transition to the general class of 
local interaction models: we have shown that the rotational derivatives preserve their zero value 
when the flow conditions are varied over a wide range in the framework of model (l), 

REFERENCES 

BELEXXII V. V. and KANSHIN A. M., Tke Efiect of Aerodynumic Forces on the ~otati~~a~ ~~tjo~ of Art~~~~ 
Satelfifes. Naukova Dumka, Kiev, 1984. 
GALKIN V. 3. and ZVORYKIN L. L., Rotational derivatives of bodies in a hypersonic rarefied gas Row. Trudy TSAGI 
2220,~15,1984. 
IVANOV S. G. and YANSHIN A. M., Nonlinear effects in nonstationary rotation of bodies in a rarefied gas. In 
Hydrodynamics and Heat and Mass Transfer of Aircrafr, pp. 114417. Kiev, 1988. 



50 N. A. GUMEROV 

4. BUNIMOVICH A. I. and SAZONOVA N. I., An analytical method for determining aerodynamic forces and moments 
in the unsteady motion of bodies in gases of various rarefaction. In Gas and Wave Dynamics. Moscow, Izd. MGU 2, 
32-43, 1979. 

5. PONOMAREV V. Ya. and SEREGIN V. S., Calculations of the aerodynamic characteristics of standard bodies based on 
the local interaction conjecture for steady and unsteady motion in a rarefied gas. In Proceedings ofthe 4th All-Union Conf 
on Rarefied Gas Dynamics and Molecular Gas Dynamics, pp. 392-398. TsAGI, Moscow, 1977. 

6. BUNIMOVICH A. I. and DUBINSKII A. V., On aerodynamic calculation of bodies rotating in a flow using the local 
interaction model. Kosmicheskie Issledovaniya 23,4,574-578, 1985. 

7. BUNIMOVICH A. I. and DUBINSKII A. V., Aerodynamic characteristics of arbitrarily rotating bodies in gases of 
various rarefaction. Kosmicheskie Zssledovaniya 27,2, 180-185, 1989. 

Translated by Z.L. 

J. Appl. Maths Mechs Vol. 56, No. 1, PP. W-59.1992 0021-8928!92 $15.00+ .OO 
Printed in Great Britain. 0 1992 Pergamon Press Ltd 

QUASI-MONOCHROMATIC WEAKLY NON-LINEAR WAVES 
IN A LOW-DISPERSION BUBBLE MEDIUM? 

N. A. GUMEROV 

Tyumen 

(Received 18 April 1991) 

The propagation of quasi-monochromatic wave packets in a rarefied polydispersed mixture of a weakly 

compressible liquid with a finite number of fractions of differently sized gas bubbles is considered. Two 

equations for the modulation waves are derived by the multi-scale method in the cubic approximation in the 

wave amplitude: the non-linear Schrodinger equation ignoring dissipation effects and the Landau-Ginzburg 

equation for low dissipation due to the viscosity of the liquid and heat losses associated with bubble 

vibration. The coefficients of the non-linear Schrodinger equation are investigated to analyse the non-linear 

(modulational) stability of waves in a monodispersed non-dissipative bubble medium. 

A LINEAR dispersion relationship has been previously obtained for acoustic waves in a polydispersed 
bubble medium without dissipation [l] and for waves in a dissipative medium [2]. The general 
scheme for deriving the amplitude equations by the asymptotic multiscale method has been 
described in several monographs (see, e.g. [3]). Modulation equations have been obtained [4] for 
waves in a monodispersed bubble chamber by Whitham’s averaged Lagrangian method [5]. 

1. THE EQUATIONS OF MOTION IN A NON-DISSIPATIVE MEDIUM 

The plane one-dimensional motion of an ideal weakly compressible liquid with a low volume 
content of spherical gas bubbles (ag+l) under conditions when thermal dissipation and capillary 
effects can be ignored is described by Iordanskii’s equations [l, 6,7] 
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